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1. Introduction

The concept of stress is well defined through the primitive concepts of force

and area-vector. Such is not the case with strain for which displacerhent-gradients

have to be usedwith the result that we find various measures of it used in

literature. In particular we have measures due to Cauchy, Green. Hencky, Almansi,

Swainger and Wall. The classical theory of elasticity employs the Cauchy

measure when the strain is small and only linear terms in displacement gradients

referred to the unstrained state are retained. The theory of finite deformation uses

the Almansi or Green measure. Hencky's measure is useful in plasticity. Swainger

uses linear displacement gradients but referred to the strained state. Wall

combines some of these measures to get new ones. It may therefore be of some

interest to suggest a generalized strain measure which includes all of them as

particular cases.

In general it is difficult to find stress-strain tensor relations suitable for

giving good quantitative results. The generalized strain mea.'ure can indicate

how a part'cular result may be extended for obtaining better agreement with
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experimental data. It may be possible to derive these improved rsuts by

taking the elastic constants as functions of strain invariants and not as absolute

constants. Thus a roasonable justification may Le obtained for a number of ad hoc

empirical formulac used in literature. We may also find that the recent tendency

to use new coefficients of the medium may not be pursued in all cases.

2. Generalized Strain Measure

As the strain tensor !;- is symmetric we may associate it with a quadri.c

surface, known as Cauchy' s Etrain quadric, at any point P, such that

.ejx xj _ = a constant . (2.1)

If A i be its principal axes and a and x i are the coordinates before and after

strain we may writo

Z da~ 2 dx/AZ.-iV: - .2.2

Any suitable function of A which vanishes for A_ = 1 when there is no deformation

may constitute a measure of strain. If we put

A = (1 - ne)- I / n , (2.3)

we notice that it includes all the known measures. In fact we have the following

results:
n=- 1._ Cauchy (C)n=-l, A=l +e, CacyC

n=- 2, A=( + 2e) . Green (G)

n=, A = exp U . Hencky (H)
(I --. (2. 4)

n = 2, A = () - ) 2 Almansi (A)

n = A=(i-e) - , Swainger(S

n =o, A=l , No strain (N)
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We can therefore call n the coefficient of strain measure and , as a generalized

strain measure. The strain components of the measures in (2.4) have been

calculated by Cauchy, Green (1), Murnaghan (2), Reiner and Hanim (3) and others.

Seth (4) has stressed the use of the A - measure in a number of applications.

We shall now illustrate the u--e of the generalized strain measure by a few

examples. In the case of simple sheer it will be shown that Rivlin' s (5) result

that no two of the normal stresses may be equal can be obtained without using

any additicnal elastic constant.

3. Homogeneous Pure Strain

In this case the displacement is given by

0l o]
u=cx0, c =2 0 (3.1)

0 0 cj

The principal pure strains are:

e = (1-c = (1=2(1

-n), 1 n 1 n)(3.2)elli 1 n -1) e 22 n (1 c. - 33 n -3 32

The strain invariants aLe:

1= (3 
n

n

-n -n j
i,j 1,2,3, (3.3)

en

n -2 -3

The cubical dilatation cv (v/v 0-1), is

(1 - nI+n21- n311I) -1 (3.4)
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LForn = 0 , which is H - measure, it takes the simpler form exp(I) - 1. For

N - measure it is obviously zero, as it should be.

We now treat the cases of simple tension, hydrostatic pressure, simple

shear and yie'd condition. In each case the results given by using generalized

strain and a linear stress-strain tensor relation involving two elastic constants

are extended and then justified by taking the elastic constants as functions of the

strain invariants.

4. Generalized Tension-Stretch Law

In this case c, =_c2 and from (3.1) and (3.2) we get

= - (3- 2R
-_ n -c 3 n)

1 (1  -n)( 3 - cn- cn) , (4.1)
IIn 2 1 1 c3

1

n hI2(1 - 311)2]

The tension-stretch law is found co be governed by the equation (4 )

T =1 -n]  , (4. 2)

when E is Young's modulus and s is the ordinary slretch of the classical theory.

For A - measure n = 2 and we get the result due to Seth . Fiom (4. 2)

we derive the following conclusion, not given by the classical theory.

(i) A yield point is indicated at T = E .

(ii) Tension and compression results are not similar.

(iii) For infinite compression s - - 1, T - - o, thus showing that no

amount of stress can reduce the length to zero.
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(VdT E
ds n+1

This is equal to E only at s = 0; otherv.ise the strain increases much

faster thaa stress in tension.

From (4. 1) we see that the yield point occurs at T = , which is a very high
n

value if the classical value of E is used. It should therefore be generalized.

An obvious extension of it is

1T = A[1 (- +Ts)-a J P (4. 3)

where A and a are constants to be adjusted. A can now represent the yield

stress and a can be taken as E/.

Comparing (4. 2) with (4. 3) we see that we can obtain this later form if we

take E as given by

-a
E = nA -23E~CnA

3n 1 (4.4)

aA[l -(ea-n){I±2(I 311)2} +..

As a first approximation E = cA ; in general it can be taken as a function of the

strain Invariants I and I.

5. Hydrostatic Pressure

In this ease all the c's are equal and the piessure-volume relation is found

to be 1

3k O 3in

For A - measure it reduces to Murnaghan' s (2 ) result, which gives vey good

agreement with Bridgeman's (6) result on the compression of sodium at high pressures.
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Here k is the ordinary coefficient of cubical expansion. To get better agreement

with results at very high pressureswhich may be of the order of 20,000 atmospheres,

Murnaghan, without giving any justification, generalized (5. 1) into

vap A [(--' )' - 1] (5.2z)

and determined A and a from Bridgeman's experimental data. We can readily see

that (5. 2) can be derived from (5. 1) if k is taken as a suitable function of the

invariant I. From (3. 2) we have

3 -
l-n) , c3 = v/v 0

Hence ! (v0/v)a - 1

k = -nA 1-- NO (V/v)-3 n - I

A -(1 - 1)3a/n](3

Aa[lI (3a - n)I+... 

which is a type of e. ,ansion sometimes used for k and which is similar to (4. 4).

In general this expa -ion is not valid, but k remains a function of I.

6. Simple Shear

In this case c is given by

r1 c 0]
c:0 0 1

(7) (3)rollowing Love and Reiner we find the following values of the principal strains:
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e e., [ -n{(4+c ±c} Inn1i F  ll'e22 = n n(+) C , (6.1)

e33

The generalized strain components are then given by
~1

1 1 2 2exx, e e 11 + - c(4+_2) 2(ll e?

- (6. )

e = (4+2) (eli -_ezz ezz ez, e yz = 0-xy-1 z' y

1 2 1
For A -measure these reduce toe = 0, e =- , e = for

=_A --yy xy
12 1

G - measure they become e 0, e = -c , e - . nall other measures
-_xx -yyx

e 0
-xx

The stress components are given by

T = A (exx +e y) + 2i e

yy A xx +yy +Zeyy

(6.3)
*rz = A@e + eyy) +12 e
-zz Aexx 4,e- lezz

rxy2e I Tyz' -T = 0

Thus we get normal stresses which give rise to Kelvin and Poynting effects. (1)

In both cases such stresses have to be applied to keep the body in equilibrium.

As e is zero only in A - and G - measures, the normal stresses T and
-xx - - -xx

E T are generally unequal, as pointed out by Rivlin 5} . We obtain this result

without using any additional elastic coefficient. From (6. 3) we see that the

normal stresses can be taken in the form
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Ai 11A11 + B 1122
IIA I

r - AIl[l 2n {(4 +cZ) 2+c} -n] (6.3)
n

B I
11 n 22 -n+- [l - 2 {(4 c) - c-n

n

za
For A - and G-measures we get T q proportional to c as has been

fon b ivi ()(1) (8
found by Rivlin () Truesdell , Green (8 ) and others.

The shearing stress T is given by

2 n  [(4 +c2)2-c] - - [(4+c 2) 2 + 2 - n
Txy n I (6.4)

(4 + c2)2

For A - measure it takes the simple form c

The results in (6. 3) and (6. 4) may be generalized by replacing - n with u

and a justification on the lines given in Sections 5 and 6 may be given.

7. Generalized Strain in Hollow Spheres and Cylinders

For the symmetrical deformation of a thick spherical shell subjected to

uniform internal and external pressures, the radial displacement, strain components

and the stress components are given by (4)

u = r(l - P) 1-r
1 nn (7.1)

e =-[iP {l +v(v+ 2)}"
-rr n
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e - (I n
,--n ' (7,)

.e e ,e =0

T A - nf + 2 [l - Pnf(v)]
-rr n n

= 1 = A[ 3 - 2 Pn Pnf(v)] + [1 - pn

-T V =0 (7.3)

where V dr f(v) =[1 + v(v + Z)] 2 P may be determined from a

non-linear differential equation resulting from the body-stress equations. At

present we shall obtain a yield condition from (7. 3) and show that it holds good

in all strain measures.

From (7. 3) we have,on eliminating Pn

nlT -T

... -T -T.o 2p l - f(v)l (7.4)
3A+Zp-nrT = 2A + 2f(v) + Z f(v)

If r' is the radius vector before strain, we have

r' = rP
dr' (7.5)

and r P(1 + v) .

These show that v -- - 1 for infinite extension and v -- co for infinite compress

From (7. 4) we thus get the inequality

n(T 7 )
- < __r- (76)
1 -T 3A+21-nT 2or

--rr

Thus, whatever the generalized strain may be and whatever values A and
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(constant or variable) may have the yield conditton in extension or compression

may be written as

(-r . 1 )+AI( rr--- +A ( r +r + ) = k (7.71

when A and A are independent of n.

Assuming that

,T TV rr 0'

we may write the generalized yield condition in the form

-:11 -33+ F(I, 1I, I11)(.Zl1 +T2 4 T 33)=F 2 (I, II, I1) , (7.8)

F1 and F being functions of the invariants I, II, and II, and T11 , _1221 133

the principal stresses in descending order of magnitude.

The yield condition 1-1 (7. 8) is true for isotropic and aelotropic materials

and for all measures of strain.

If the mean stress is negligible we get

ZIr - 133 = F2 2 (7.9)

which is a generalized form of Tresca' s yield condition.

Similar results may be obtained from the case of hollow cylinders.
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~Summary -

All the known strain measures can be represented by the genert.iZed strain

measure (1 - n)eIn where n may be called the coefficient of strain measure.

Any stress-strain tensor relation cannot give a complete quantitative picture.

The result obtained by using any one of them will have to be generalized to con-

form to experimental data. The generalization may be !ustified by assuming the

coefficients of the medium to be functions of the strai A invariants. The intro-

duction of new coefficients of the medium may therefore be not found nec ?s sary

in many cases.
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